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Determinants of Seasonal Rainfall
And Forecast Skills in Semi-arid South-east Kenya
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Abstract

Determination of seasonal rainfall predictors with local ramification offers an
opportunity to improve climate forecast. This study makes a contribution
towards meeting the challenges of more local level studies by identifying sea
surface temperatures influencing seasonal rainfall and forecast skill for the
main growing season of October-December in southeast Kenya. The study was
based on nine key rainfall stations located in different climatic zones in
southeast Kenya, and used monthly rainfall for the period 1961-2003.
Stepwise regression results show that sites in southeast Kenya are influenced
by different SSTs, with the southern oscillation index and the Atlantic Ocean
emerging as key seasonal rainfall predictors. Nifiol, Nifio3.4, Nifio3 and Nifio4
SSTs subsequently emerged as predictors in the region. Forecast verifications
scores generated from Climlab2000 software show a significant association
between observed and forecast seasonal rainfall for six out of the nine stations.
Stations with a higher hit score skill also showed a significant correlation
between observed and predicted rainfall. Sites in semi-arid environment (UM4
and LM5) had the highest skill of predicting dry events, while high altitude
zone (LH2) had the highest skill of predicting wet events.
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Introduction

Climate variability has posed a threat to climate-dependent economic
sectors such as agriculture and forestry, and significantly contributes to
environmental degradation on a global scale (Chipanshi et al., 2003).
Developing countries, particularly in sub-Saharan Africa, have to contend
with the disproportionate effects of climate variability. For many of these
countries, agriculture is the mainstay of their economies and accounts for
between 20-30% of their GDP (Sokona & Denton, 2001). A large part of
agriculture in developing countries is dependent on rainfall, and any
climate variability affects food production and livelihoods, and consequently
exposes a plethora of social and economic problems that remain hidden
during a normal rainy season.
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It was against this background that prior to the 1997/98 El Nifio event, the
international community established the Regional Climate Outlook Forums
(RCOFs) (WMO, 2001) in developing countries. RCOFs were designed to
provide advance information on the likely climatic features of the upcoming
season, and have significant applications in agricultural management.
However, tropical climate prediction remains a great challenge (Hastenrath
et al.,, 2004). One of the challenges is when forecast information covers a
wide geographic area (Patt & Gwata, 2002; Lemos et al., 2002). That is,
when the information covers an entire country or a region it is unclear of
local ramifications. It is on the understanding that rainfall patterns are
very heterogeneous over a small area that this study seeks to make a
contribution towards meeting the challenges of more local level studies by
identifying sea surface temperatures (SSTs) influencing seasonal rainfall
and determine the skill of forecasting in semi-arid southeast Kenya.

a) The study area

The southeast Kenya is a subset of Kenya’s arid and semi-arid lands
(ASAL). The region falls on the eastern side of Mount Kenya. The area is
divided into eight administrative districts as shown in Fig. 1. The area has
two rainy seasons: the long March-May (MAM) rains, and the short
October-December (OND) rains. Precipitation is unevenly distributed
within the rainy season, and shows significant variability from year to year
and season to season. According to Jaetzold and Schmidt (1983), southeast
Kenya has several agro-ecological zones, ranging from high rainfall/high
productivity sites (annual precipitation>1000, upper highlands) to areas of
extremely low productivity where rainfall is sparse and variable (annual
rainfall <700mm, lower midlands). Northern districts (Meru North, Meru
Central, Meru South and parts of Embu) border Mt. Kenya and form the
leeward side. These districts have high potential agro-ecological zones such
as lower highland (LH) and upper midland (UM), and receive good rainfall
for tea and coffee farming. South and eastern districts of the sub-region are
on the other hand characterized by highly variable rainfall with short
growing season and livestock keeping. Lower midland (LM) 5 is the largest
agro-ecological and falls within the southeastern districts (Kitui, Mwingi,
Machakos, Makueni).

In this study eight main agro-ecological zones were identified. In each
agro-ecological, representative rainfall stations with a good quality
rainfall data were identified, and their location is as shown in Fig. 1. Table
I shows geographic location and mean rainfall distribution for each of the
stations.
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Figure 1: Map showing administrative districts and rainfall
stations in the study area in Kenya

Table 1: Geographic location, agro-ecological zones and means rainfall
distribution

Station Rainfall Data AEZ Altitude (m) Rainfall (mm)
(No. of years)

MAM OND Annual

Nthangu 41 LH2 1829 453.1 538.1 1188.7
Kairuri 38 UM2 1676 793.5 563.1 1672.7
Mikinduri 29 UM3 1158 876.8 990.1 2028.8
Katumani 42 UM4 1600 276.6 299.9 696.0
Malinda 34 UM5-6 1524 243.0 180.1 549.4
Meru Forest 42 LM3 1585 538 772.4 1476.7
Kiritiri 42 LM4 1143 440.1 425.5 963.5
Makindu 42 LM5 1000 200.1 338.3 629.3
_Kyuso 42 LM5 747 282.5 418.1 779.2

Note: Most of the stations receive more OND rainfall than MAM rainfall. All the stations had
rainfall data of more than 25 years. AEZ = Agro-ecological zone
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b) Rainfall prediction in Eastern Africa

Rainfall climatology in eastern Africa has been found to correlate with sea
surface temperatures over equatorial Indian Ocean, eastern Pacific Ocean,
SOI, Tropical cyclones, ITCZ, and anti-cyclones. Ogallo (1988) found peak lag
correlation coefficient r, of -0.6 between SOI and October-December rainfall a
long the coast of southern Kenya and northern Tanzania. Farmer (1988)
recorded similar findings, establishing a correlation between SOI and the
short rains of the Kenya coast. Hutchison (1990) established a coefficient of
correlation r of -0.8 between the (OND) seasonal rainfall and SOI in
southern and central Somalia. Shisanya (1996) computed month-month
patterns of zero-lag correlation for some stations in southeast Kenya
between OND rainfall and SOI, and found the correlation to be significant
(p<0.05). But SOI is not the only predictor of southeast Kenya rainfall.
Phillips and McIntyre (2000) found a correlation coefficient, r, 0.57 between
NINOS3 region SST anomalies of July-September (JAS) and September-
December rainfall in Uganda. According to Mutai et al. (1998), variability in
equatorial Pacific SSTs is the lead predictor of east Africa’s OND rainfall,
with equatorial Indian Ocean and southern Atlantic Ocean surface
temperatures playing a smaller although a significant role. A study by
Hastenrath et al. (2004) found SST indices and tropospheric winds within
the equatorial Indian Ocean to influence east Africa’s coastal OND-rains.
Nonetheless, the correlation was found to be deteriorating particularly in the
1980s and 1990s. Anyamba et al. (2001) found a significant (p<0.05) zero lag
correlation between East Africa’s NDVI and southern Atlantic, Global
Tropics SST, Eastern Pacific Wind Index (EPWI) and Western Indian Ocean
(WIO) SST index. In Kenya, the International Research Institute for Climate
and Society (IRI) (2005) conducted a demonstration project in application of
seasonal climate information to promote a predictable supply of water for
both power supply and irrigation. The IRI study identified dominant
predictors influencing April-July (AMdJJ) and October-December (OND)
inflows of Masinga dam, a hydroelectric power station.

The point of focus in all these studies was OND rains. Two reasons explain
this. October-December rains have shown a significant relationship with
ENSO signals (Farmer, 1988; Hutchison, 1990), unlike the MAM rains in
which there is agreement in literature that it has no significant relationship
with ENSO (Mutai et al., 1998; Phillips & MclIntyre, 2000). Secondly, OND
rains have been found to be most coherent and predictable (Odingo et al.,
2002). Thus the OND season has proved to be the main growing season for
farmers in southeast Kenya. This study, therefore, examines the specific
SSTs influencing OND rainfall in southeast Kenya and the forecast skill of
each of them.

4
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2. Data and Methods of Study
2.1 Data

2.1.1 Rainfall

Monthly mean rainfall records {1961-2003) for a network of nine stations in
the southeast Kenyan region were used in this study (Fig. 1; Table 1).
Although the region has 23 rainfall stations with daily data, only nine were
sampled on the basis on data quality. The nine sample stations had daily
data with less than 10% missing values in any given year. Selected rainfall
stations had data ranging between 29 and 42 years. According to Atheru
(1999), 25 year data are the minimum to get a reliable estimate of forecast.
Estimation of missing data was done as described by Shaw and Wheeler
(1985), while F-test (Alders & Roessler, 1977) was used to test data
homogeneity.

2.1.2 Sea Surface Temperatures (SSTs) Indices

A time series of monthly SST data from 1961-2003 was used to develop
OND rainfall forecast model for all the 10 rainfall stations. ENSO indices
used in the study were:

1. SSTs anomaly data drawn from the NINO3.4 region in the eastern
Pacific Ocean (5°N-5°S; 170-120°W)

2. SSTs anomaly data drawn from the NINO4 region in the eastern
Pacific Ocean (5°N-5¢S, 1600 E-1500 W)

3. SSTs anomaly data drawn from the NINO1 region in the eastern
Pacific Ocean

4. SSTs anomaly data drawn from the NINOS3 region in the eastern
Pacific Ocean (5° N-5¢ S, 150°W-90°W)

5. Southern oscillation index (SOI) - Represents the basin-wide sea-
saw In atmospheric pressure patterns between the eastern and
western Pacific, measured as normalized difference in sea level
pressure between Tahiti and Darwin, Australia.

6. North Atlantic SST (NAT) located 5-20°N, 60-30°W

7. South Atlantic SST (SAT) located 0-20°S, 30°-10°E

8. Global Tropics SST (TROP) located 10°S-10°N, 0-3600

These data were obtained from the NOAA, National Weather Service,
National Centers for Environmental Prediction, Climate Prediction Centre
(http://www.cpc.noaa.gov/data/indices/). Use of SSTs in establishing their
influence on seasonal rainfall is also found in Verdin et al. (1999), Phillips
and MclIntyre (2000), and Seleshi and Zanke (2004). Since the determination
of forecast skill focused on OND growing season, this study utilized SSTs of
the months of June to September (JJAS) on the assumption that these are
the SSTs influencing October- December rainfall in southeast Kenya.
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a) Statistical analysis

Rainfall data was subjected to forward stepwise regression (using SYSTAT
software) to identify rainfall predictors for individual stations. In selecting
predictors, a maximum of six predictors was considered to avoid over-fitting
of the forecast model that sometimes lead to inaccuracy. A step with an
improved coefficient of determination (r?) value with a near 0 p-value was
picked and a regression equation generated using equation 1. Data for each
station was regressed at 85% confidence level after the 95% confidence limit
failed to yield results.

¥ =g+bx b x . " bx, +e

Equation 1 was also used to estimate missing daily rainfall data.
Distribution approach, contingency tables and associated scores (Brooks &
Doswell, 1996; Atheru 1999) were used to determine forecast skill for the
short rains of the study area. The advantage of the distribution approach is
that the nature of the forecast errors can more easily be diagnosed. The
disadvantage is that it is more difficult to condense the results into a single
number. In this study there were three categories in the contingency tables:
below normal, normal and above normal forecasts.

Normalized observed and forecast rainfall data values were imported from
MS Excel to the Climlab2000 computer software for analysis (using
contingency tables). CLIMLAB2000 is climate data analysis and
visualization software that has been developed by the International
Research Institute for Climate Prediction (IRI) for training climate
prediction models (Mutemi, 1999). Contingency tables of 3 X 3 with chi-
square set at 95% level gave results in the order of lowest values (below
normal), near zero values (normal) and highest values (above normal). To
calculate forecast verification scores, contingency table values were used as
discussed by Murphy (1993) and Atheru (1999).

Discussion of Results

Stepwise regression results show that October-December rainfall in
southeast Kenya is influenced by various climate indices. Table 2 shows
the determinants of seasonal rainfall for each of the stations. The
Southern Oscillation Index (SOI) was the most common indice, emerging
as one of the predictors in all but Meru Forest station. In two stations
(Malinda and Kiritiri), SOI indices of more than one months (June, July
and September) were the predictors. The correlation between between SOI
and OND rainfall in eastern Africa is also reported in Ogallo (1988),
Hutchison (1990), and Phillips and McIntyre (2000). The Southern (SAT)
and Northern Atlantic (NAT) SSTs were predictors in three and two agro-
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Table 2: Rainfall predictors for the nine sampled sites in southeast Kenya

Sitation Predictor Predictor Predictor Predictor Predictor Predictor
1 2 3 4 5 6

Wihenzu  Nino3.4-June SOI-Sept  NAT-Sept Nino3.4-Sept -
o Ninol-Sept  SOI-June - & =
Mlindur: SOI-June 2 £ - - -
[ftmmani NAT-June SOI-Sept - - - -
lllalindza Nino3-Sept  SOI-June SOI-July - -
Ml SAT-June 3
et
[ty Nifnol-June Ninol-Sept SOI-June SOI-July SOI-Sept SAT-June
Mlalkindu  Nino 4-June  SOI-August - - - -
Eyuso Nino4-August SAT-June - July SOI-July

wenlogical zones respectively. It is notable that stations influenced by the
wouthern Atlantic SSTs fall north of the Equator(Meru Forest, Kiritiri and
Ilymuso), while those influenced by northern Atlantic SSTs are south of the
Bguator (Nthangu and Katumani). The influence of SAT on east African
pminfall 1s discussed by Mutai (1998), and on NDVI by Anyamba et al.
(2001). Camberlin et al. (2001) and Paeth Hense (2004) have
@emonstrated how SST anomalies within the Atlantic Ocean influence
Wecadal and longer-term rainfall fluctuations along the West African coast
wnd the Sahel zone. Global Tropical SSTs (TROP) are rainfall predictors at
Kangundo rainfall station.

e influence of TROP SSTs on eastern African NDVI and rainfall are also
peported in Anyamba et al. (2001) and Seleshi and Zanke (2004). Other
S5Ts infuencing seasonal rainfall in the southeast Kenya stations are Nifiol
(Bamruri and Kiritiri), Nino3 (Malinda) Nifno3.4 (Nthangu), and Nifno4
(lyuso). Studies by Verdin et al. (1999), Phillips and Mclntyre (2000)
Wannebo and Roseinzweig (2003) and Seleshi and Zanke, 2004) have
@iscussed the influence of Nino3 on NDVI and climate variability. In the
selected stations of southeast Kenya, Nino3 is a determinant of seasonal
rainfall in agro-ecological zone 5-6 (a transition zone). Ninol is a
@eterminant in the upper midland and lower midland zone while Nino 3.4
wnd Nino4 are determinants in agro-ecological zones lower hihglands and
lpwrer midlands respectively. With the exception of Seleshi and Zanke (2004)
and Anyamba et al. (2001), most of the literature avalable utilized only one
wf the SSTs and none explored the possibility of Nifiol, Nifio3.4 and Nifio4
ws rainfall predictors. Although Anyamba et al. (2001) utilized several SSTs,
the study used one station in east Africa; while Seleshi and Zanke (2004)
study was based in Ethiopia. Thus the present study contributes towards
udentifying rainfall determinants in the semi-arid region of Kenya.
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Fig. 2(a), (b) and (c) are the cross validated forecasts generated from the
predictors identified in Table 2 for three station (Katumani, Mikinduri and
Makindu respectively). The stations represents agro-ecological zones Upper

midland 4(UM4), Upper midland 3 (UM3) and Lower midland 5(1LM5)
respectively.
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Figure 2 (c): Makindu

Figure 2: October-December observed and predicted rainfall for
(a) Katumani (b) Mikinduri and (c) Makindu rainfall stations

Table 3 presents the stepwise regression results between observed rainfall
and SSTs, and forecast verification scores of stations in southeast Kenya. It
1s observed that Kiritiri and Nthangu had the highest coefficient of
determination (r2). The r2 for these sites were 0.445 and 0.389 for Kiritiri and
Nthangu respectively; an indication that SSTs explain 44.5% and 39% of the
rainfall recieved respectively. In the rest of the stations, SSTs accounted for
less than 30% of the rainfall received. Despite the low value of r2, forecast
verification scores show that with the exception of Kairuri, Meru Forest and
Kyuso, all the other stations have a better skill of forecast. It is observed in

Table 3: Stepwise regression results and forecast verification scores

Station R2 p-value Percent Post Post Hit Score
Correct agreement agreement Skill
Dry (%) wet (%) X2
Nthangu 0.389 0.001 54.76 57 @il 0.32 17A4*
Kairuri 0.272 0.003 35.90 31 46 0.04 2.31
Mikinduri 0.184 0.016 58.06 60 64 0.37 9.5 *
Katumani 0.205 0.010 58.14 79 53 0.37 21.84*
Malinda 0.351 0.003 57.14 50 58 0.36 10.68*
Meru Forest 0.063 0.104 41.86 38 44 0.13 1.79
Kiritiri 0.445 0.001 58.14 57 67 0:37 13:25%
Makinduy, 0.194 0.014 58.49 64 53 0.30 10.73*
_Kyuso 0.227 0.013 46.51 43 53 0.20 4.26

Note: The table illustrates a distribution approach, contigency tables and associated scores for
the forecast skill of the stations in Southeast Kenya. The asterick (*) indicate the chisquare
test was significant at 0.05 level
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Table 3 that besides having low 72, the three stations had the lowest forecast
verification scores and the relationship between observed and predicted
OND rainfall was not significant. Results for Mikinduri are, however,
interesting; that despite having an 72 of 0.184, the station’s rainfall showed
good verification scores, including the significant relationship between
observed and predicted OND rainfall.

Stations in agro-ecological zones UM4 (Katumani), LM4 (Kiritiri) and UM3
(Mikinduri) had the highest percent correct (fraction of forecasts that were
correct ) values. Katumani, Makindu and Mikinduri had a skill of predicting
dry events with a percentage of 79%, 64% and 60%, respectively. With the
exception of Mikinduri, Katumani and Makindu fall in agro-ecological zones
UM4 and LM 5 zones charaectirized by frequent climate variability. Wet
events were best predicted at Nthangu (71%), Kiritiri (67%) and Mikinduri
(64%). Nthangu and Mikinduri falls in agro-ecological zones LH2 and UMS3,
and recieve annual rainfall exceeding 1000mm while Kiritiri is in agro-
ecological zone LM4 and recieves annual rainfall of over 900mm. The Hit
score skill (Heidke skill score) measures the fraction of correct forecast,
most often associated with chance as the standard of comparison and is a
popular verification statistics (Atheru, 1999). The highest Hit Score values
were recorded Mikinduri, Kiritiri and Katumani (0.37). Chi-sqaure (X2) test
results show that stations that had an above average percent correct values
had forecast models showing a significant association between observed and
forecast OND rainfall. The significant association is a demostration that
SSTs of the eastern Pacific and Atlantic Oceans influence rainfall in
southeast Kenya.

Conclusion

October-December rainfall in the southeast sub-region is influenced by
across section of SSTs, and the southern oscillation index (SOI) is a key
determinant. Variations in the SSTs influencing OND seasonal rainfall
within the sub-region is a manifestation that rainfall patterns are
heterogenous over a small physical area. Despite SSTs accounting for less
than 50% of the OND rainfall received in the area, the significant
association between observed and forecast rainfall in six stations is a cause
for optimism.These findings provide an understanding of the specific
rainfall predictors within the sub-region, providing a basis on which to
generate seasonal climate forecast products at a reduced geographical scale.
Utilization of these findings in generating forecasts products has the
potential to improve forecast quality (Hansen, 2005), especially in the semi-
arid southeast Kenya that is characterised by interannual rainfall
variability.
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However, these conclusions have to be qualified with some elements of
uncertainty. Seasonal climate forecast are probabilistics, and the skill of
prediction using SSTs remains low. This is a challenge to climate scientists
who should work round the clock to improve the skill of forecast. Although
the relationship between OND rainfall in east Africa and the Indian Ocean
SSTs is deteriorating (Hastenrath, et al., 2004), future studies should
include Indian Ocean SSTs to determine their role in OND rainfall
variability in southeast Kenya.
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